Back To Chiropractic CE Seminars Back to Basics: X-Ray ~ 6 Hours

CERVICAL, THORACIC & LUMBAR SPINE Back to Basics

Jennifer Pedley, MS, DC, CCSP, DACBR Chiropractic Radiologist

www.jprad.com

- Radiographic Positioning & Factors
 - Cervical spine
 - Thoracic spine
 - Lumbar spine

- Radiographic Evaluation— tools you can use
 - Cervical spine
 - Thoracic spine
 - Lumbar spine

Cervical Spine Views

3 Views-

- APOM, AP lower cervical, and neutral lateral performed first; standard views
- If needed, Followed by extended and flexed lateral views>>> evaluate for ligamentous laxity and/or instability
 - Oblique views are helpful in evaluating the intervertebral foramina

APOM

• **FFD** 40"

 CR uvula; if needed, 5 degree with cephalad tube tilt

Collimate 5x5

AP OPEN MOUTH

Structures Visualized:

- Dens
- C1 lateral masses
- Occipital Condyles
- C2 body
- •C2 SP

AP Lower Cervical

• **FFD** 40-3"

• Tube Tilt 15° cephalad

CR C3/4(thyroid cartilage)

Collimate 7x10

Tube Tilt Rule

 For every 5 degrees of tube tilt, move xray tube one inch closer to the patient

15 degree tube tilt=
 move tube closer by 3
 inches (40 inches to
 37 inches)

AP LOWER CERVICAL

Structures Visualized

- Vertebral Bodies
- ●TP's
- •SP's
- Upper Ribs
- Upper Lung Fields
- Uncinate Processes
- Tracheal Air Shadow

NEUTRAL LATERAL

•FFD 72"

•**CR** C3

•Collimate 7X10

LATERAL CERVICAL

Structures Visualized

- Vertebral bodies C2-T1
- Disc Spaces
- ADI
- •SP's, Lamina, Pedicles,
- Articular Pillars and Facets
- Tracheal Air Shadow
- George's Line & Spino-laminar line
- Sella Turcica
- C1 Arches

LATERAL EXTENDED

FFD

72"

CR

C3

- Collimate 8x10
- May need to be landscape in patients with greater range of motion

LATERAL FLEXED

•FFD 72"

•CR C3

•Collimate 8x10

 May need to be landscape in patients with great range of motion

Posterior vs. Anterior Obliques-

Posterior

- Visualize the opposite IVF's
- Example: Left
 posterior oblique
 radiograph,
 visualizes the right
 IVF.

Anterior

- Visualize the same side IVF's
- Example: Right anterior oblique radiograph, visualizes the right IVF.

LEFT ANTERIOR OBLIQUE

•FFD 72"

CR

C3

Tube tilt caudad**

15°

Collimate 7-8x10

LEFT POSTERIOR OBLIQUE

• **FFD** 72-3"

• **CR** C3

• Tube tilt 15 ° cephalad***

• Collimate 7-8x10

CERVICAL OBLIQUE

Structures Visualized

- •IVF's- should be open and about the same size at every level.
- Vertebral Bodies
- C1 arches
- Ribs
- •SP's
- Facets

Evaluation: ABC'S

Alignment

Bone

Cartilage

Soft tissue

Alignment- ABC's

- Lines of interest
- Posture
- Lordosis

Lines of Interest

- Spinolaminar line (green)
- Posterior cervical line (blue)
- Anterior cervical line (red)

These lines should draw in a smooth arc. If there is disruption of these lines, then further evaluation of the bony structures is required.

Radiographic Signs of Instability-(Evaluate on the lateral radiographs)

- Vertebral body displacement >3-3.5mm
- Greater than 11 degree angulation
- Widened interlaminar & interspinous space
- Widened facet joints
- Widened interpediculate distance (AP view)
- Atlanto-dental interspace >3mm adults; >5mm in children

These findings indicate skeletal, ligamentous and articular disruption.

Measuring Intersegmental Translation- compare to the level below

Greater than 3-3.5 mm of vertebral body motion= ligamentous instability

Need to compare the flexed and extended lateral to the neutral lateral radiograph.

www.chiro-trust.org

Measuring Angulation

 Lines drawn on the Inferior endplates.

Greater 11degrees=ligamentousinstability

Other Evaluation Tips

- Spinous processes should be equidistant
 - If widening or increased distance, indicator of interspinous ligament injury/disruption.
- Facet joints imbricated (stacked on top of each other[©])

More Evaluation

ADI-atlantodental interspace:

V-shaped is normal

- Indicator of ligamentous instability (Transverse Ligament) with widening of the ADI on the Neutral lateral, or on the Flexed lateral, or on the Extended lateral.
 - Greater than 5mm in children & greater than 3mm in adults

Radiographic Signs of Instability

- Vertebral body displacement >3-3.5mm
- Greater than 11 degree angulation
- Widened interlaminar & interspinous space
- Widened facet joints
- Widened interpediculate distance (AP view)
- Atlanto-dental interspace>3mm adults; >5mm in children

These findings indicate skeletal, ligamentous and articular disruption.

AMA Guides, 5th ed.; Resnick D. Diagnosis of Bone and Joint Disorders, 4th ed. 2002; 2936.

Evaluation

Cervical
 Gravity Line:
 Vertical line
 through apex
 of odontoid,
 should
 intersect C7

Cervical Gravity Line

- Gravity line anterior to C7
 - Anterior shift in weightbearing

- Gravity line posterior to C7
 - Posterior shift in weightbearing

Evaluation

- Cervical Lordosis
 Angle: Normal 35-45 degree
 - In this case, mild anterior shift in weightbearing

Lordosis Angle

 Hypolordosis- loss of or straightening of the normal lordosis, less than 35 degrees.

 Hyperlordosis- increased lordosis, greater than 45 degrees.

Bone- ABC's

- Cortex
- Shape and size of the vertebral bodies
 - Should be same size at every level
 - Example: compression deformity= trauma or pathologic from age related osteoporosis, primary bone tumor or mets
- Pedicles and spinous process
 - Make sure they are there!!
 - Equidistant to each other
- Intervertebral foramina

Bone-continued

- Lateral masses of C1 and Dens of C2
 - Normal in shape and size with intact cortex

Cartilage-ABC's

Joints:

- Facet & Uncovertebral joints
 - Shape, size and density
 - Example: Sclerosis, narrowing and hypertrophied= degenerative joint disease
- Intervertebral discs
 - Size
 - Example: Disc narrowing with/without spondylophytes= degenerative disc disease

Soft Tissue- ABC's

Prevertebral or anterior soft tissues of the cervical spine

Normal calcifications within the soft tissues

Tracheal air shadow & Upper lung fields

Lateral cervical spine

- Evaluate the anterior and posterior soft tissues
- Prevertebral (anterior) soft tissues:
 - Retropharyngeal: >7.0-mm
 - Retrotracheal: >22.0mm

Prevertebral Soft Tissues

Why do we need to look at them?

 Widening of the anterior/ prevertebral soft tissue and/or increased density= Differential diagnosis is edema due to trauma, infection, or a mass/tumor.

Posterior Soft Tissues

 Don't miss fractures of spinous process when evaluating the soft tissues

 Normal nuchal bones- calcification within the ligamentum nuchae, normal physiologic variant.

Soft tissues-continued

Normal calcification of the thyroid cartilage

- AP radiograph of cervical spine
 - Tracheal air shadow
 - Upper lung field
 - Lateral soft tissues
 - Atherosclerosis of carotid arteries

 Tracheal deviation to the right.

 The normal tracheal cartilage calcification is also deviated to the right.

Atherosclerosis of bilateral carotid arteries

2 Views of the Thoracic Spine

AP and Lateral views

- PA chest view is optional
 - With full inspiratory effort

AP Thoracic Projection

• **FFD** 40"

• **CR** T6

Collimate

7x17

Lateral Thoracic View

• **FFD** 40"

• **CR** T6

• Collimate 10x17

 Take image during expiration to blur out the ribs

AP and Lateral Thoracic Views

Evaluation: ABC'S

Alignment

Bone

Cartilage

Soft tissue

Alignment-ABC's

- Posture
 - Convexities
 - Scoliosis
 - If 10-15 years of age, curve less than 20 degrees maybe monitored, assess for progression of 5 degrees or more in a 3 month timeframe.
 - Curves 20-40 degrees may be surgical

Scoliosis

Cobb-Lippman method of mensuration

Alignment-continued

- Kyphosis
 - Normal= 20-40 degrees (increases with age)
 - Hypokyphosis: less than 20 degrees
 - Hyperkyphosis: more than 40 degrees

Bone- ABC's

- Shape and size of vertebral bodies
 - Compression deformity=fracture or normal morphology
- Intervertebral foramina
 - Equal in size
 - Stenosis: degenerative posterior osteophyte, degenerative disc disease, facet degeneration, and/or degenerative retrolisthesis.
- Pedicles
 - Missing pedicle= aggressive pathology such as tumor or metastatic disease

Bone-continued

- Spinous processes
 - Make sure they are present, normal cortices, normal size

- Intervertebral foramina
 - Make sure they are clear and equal size
 - Stenosis= posterior osteophyte, degenerative disc disease, degenerative retrolisthesis, facet degeneration

Cartilage-ABC's

- Disc spacing
 - Degenerative disc disease= disc narrowing with or without spondylophytes
- Facet joints
 - Hypertrophied and sclerosis= degenerative joint disease

 Normal costochondral cartilage calcification of the lower ribs

Soft tissues- ABC's

- Chest
 - Lung fields: check for radiopacities/nodules/tumors
 - Tracheal air shadow
 - No deviation; should be midline
 - Aortic knob
 - Atherosclerosis-age related
 - Normal in size

Soft tissue-continued

Hemidiaphragm

- Megenblase should not be superior to the left hemidiaphragm= Hiatal hemia
 - Meganblase above the hemidiaphragm is hiatal hernia.

Hiatal Hernia

Air above the left hemidiaphragm

2-3 Views of the Lumbar Spine

AP

Lateral

Angulated PA or AP lumbosacral spot view

or

Lateral lumbosacral spot view

AP Lumbar Spine

• **FFD** 40"

• CR 1" above iliac crest

Collimate 10 x17

Lateral Lumbar View

• **FFD** 40"

• **CR** 1" above iliac crest

Collimate 11x17

AP and Lateral Views

www.uwmsk.org

AP Angulated Lumbosacral

• FFD 40"-5"

• CR 1" below ASIS

Tube tilt 25-35°

cephalad (25 degrees caudad for PA angulation)

Collimate 10x12

AP (PA) Angulated Lumbosacral

Structures Visualized

- L5-S1 Disc Space
- Sacroiliac (SI) Joints: Best radiograph to evaluate for the SI joints
- Sacrum Sacral Foramen
- •L5 TP's and SP's
- L5 Vertebral Body

(Left) Posterior Oblique View

• **FFD** 40"

• CR 1" above iliac

crest

Collimate 11x14

Scotty Dog

- Nose =Transverse process
- Eye =Pedicle
- Ear =Superior facet
- Front leg =Inferior
- Collar thru the neck=
 Fracture

www.imageinterpretation.co.uk

Evaluation: ABC'S

Alignment

Bone

Cartilage

Soft tissue

Alignment-ABC's

- Anterior and posterior vertebral body line (lateral radiograph)
 - Evaluate for anterolisthesis/retrolisthesis of the lumbar segment, compare to the level below.
 - Cause of anterolisthesis= degenerative changes or pars interarticularis defect or fracture
 - Cause of retrolisthesis= most commonly degenerative changes
- Posture
 - Gravity Line
 - Anterior shift in weightbearing
 - Posterior shift in weightbearing

Evaluation

Ferguson
 Gravity Line:
 from center of
 L3, should
 intersect
 anterior 1/3 of
 sacrum

Evaluation

- Ferguson Gravity Line
 - Anterior shift in weightbearing= increased stress on facet joints
 - Posterior shift in weightbearing= increased stress on the IVF, pars interarticularis, facet joints & posterior disc.

Evaluation

Normal Lordosis:50-60 degrees

Alignment- continued

- Lordosis
 - Normal lordosis: 50-60 degree
 - Hypolordosis: loss of the lumbar lordosis with straightening.
 - Hyperlordosis: increased lumbar lordosis
- Scoliosis/convexities
 - If 10-15 years of age, curve less than 20 degrees maybe monitored, assess for progression of 5 degrees or more in a 3 month timeframe.
 - Curves 20-40 degrees may be surgical

Bone- ABC's

- Shape and size of vertebral bodies
 - Compression deformities

- Pedicles and spinous process
 - Make sure they are present and in the correct location
 - Fractures of pedicles
 - Spina bifida occulta, normal variant.

Normal spina bifida occulta

 No fusion at the junction of the lamina and spinous process

Posterior cleft

Bone-continued

- Pars interarticularis
 - Defect/fracture
 - Classification of pars interarticularis defects/fractures
 - Grade of spondylolisthesis (anterolisthesis)

Cause of Anterolisthesis

Types/Causes

- Type 1: Dysplastic (congenital)
- Type 2: Isthmic
 - 2a= fatigue fracture of the pars interarticularis
 - 2b= elongation of the pars
 - 2c= acute fracture of the pars
- Type 3: Degenerative disc disease or degenerative facet joints
- Type 4: Traumatic, fractures to the neural arch
- Type 5: Pathologic, bone disease

Grade of Spondylolisthesis

 Grade 1 spondylolytic spondylolisthesis at L5

- Meyerding Classification:
 - Grade 1-4

Bone-continued

- Intervertebral foramina
 - Make sure they are clear and equal size
 - Stenosis= posterior osteophyte, degenerative disc disease, degenerative retrolisthesis, and/or facet degeneration.

Bone-continued

- Lower ribs
 - Normal costochondral cartilage calcification

Sacrum/Ilium

 Hips-femur and acetabulum if included in the AP lumbar study

Cartilage-ABC's

- Facet joints
 - Degenerative changes

- Sacroiliac joints
 - Degenerative changes= bony proliferation, sclerosis and joint narrowing.
 - Inflammatory (ankylosing spondylitis)=bilateral erosive changes, widening of the joint; or complete fusion

Cartilage-continued

- Transitional segments
 - L5= sacralization
 - S1=lumbarization
 - Classification

- Intervertebral discs
 - Disc spacing= narrowing with/without spondylophytes is degenerative changes.

TRANSITIONAL SEGMENT AT L5

Transitional Segment at L5

- Sacralization of L5
 - Bilateral pseudoarthrosis, articulation to the sacrum,
 - Ilb Castellvi
- Complication
 - Increased stress above and below
 - Early degenerative disc disease at L4-L5.

Castellvi Types

- Type II and IV- associated with low back pain= Bertolotti's syndrome- inflamed transitional segment.
 - Clinically misdiagnosed as sacroilitis.

Soft tissues- ABC's

- Anterior soft tissues
 - Atherosclerosis of abdominal aorta, iliac arteries
 - Calcification of abdominal aorta: width of abdominal aorta should not exceed 2.0 cm (lateral radiograph)
 - Gallstones: right upper abdominal quadrant, AND anterior to the spine
 - Kidney stones: right or lower abdominal quadrant, but overlies or adjacent to the spine.
- Lower lung field
 - Check for radiopacities or tumors/masses
- Bowel gas

Atherosclerosis of abdominal aorta

Widening
 of
 abdominal
 aorta,
 greater
 than 4.5 cm

Soft tissues-continued

- Organ shadows
 - Kidney: calcifications/stones
 - Liver: Enlarged (hepatomegaly)
 - Spleen: Enlarged (splenomegaly); extending inferiorly from the left 12th rib.
- Pelvic basin
 - Bladder shadow: Distended= prostate pathology
 - Uterine fibroids (benign calcifications)
 - Vas deferens calcification= V-shaped tubular calcification within the mid portion of pelvic basin
 - Associated with diabetes

Splenomegaly

Hepatomegaly

Vas Deferens Calcification

Soft tissues-continued

- Surgical artifact within the abdomen and pelvic basin
 - Cholecystectomy (gallbladder removal)
 - Vascular clips
 - Intrauterine device

More Cases

 Cervical spine with congenital anomalies; degenerative changes; trauma.

Case

 Neck pain following motor vehicle accident.

Findings/Diagnosis

- Hypolordosis of cervical spine with anterior shift in weightbearing
- Cervical spine tilts to the left.

 Congenital block vertebrae at C2-C3, C4-C5 & C6-C7.

Case

Findings

- Generalized osteopenia
- Multilevel degenerative disc disease with anterior intercalary bone at C5-C6 level
- Multilevel facet arthrosis
- Degenerative retrolisthesis at C3

Intercalary Bone

 Calcification of the annular fibers

Sign of degenerative disc disease

Case

www.auntminnie.com

Findings

Thick ossification of the ALL

 Mild facet degeneration and disc narrowing

Hypolordosis

Diffuse Idiopathic Skeletal Hyperostosis- DISH

- Common in thoracic and lumbar spine.
 - Right sided in the thoracic spine.

- OPLL
- Complications
 - Dysphagia

Case

Chronic pain

Misdiagnosed as DISH

Findings/Diagnosis

- Severe osteopenia
- Anterior shift in weightbearing
 - Cervical & upper thoracic tilt to the left

- Facet fusion
- Anterior spinal fusion, thin ossification of the annulus fibrosus.

AP open mouth

- Fusion at the C1 lateral masses to C2.
- Occiput low on right; rotation of C2.

2 years ago-Lumbar Spine Xrays

Findings

- Transitional segment at L5 (Sacralization)
- Pelvic unleveling low on right; femoral height- low on the right.

- Degenerative changes of lumbar spine
- Bilateral hip arthrosis
- Atherosclerosis of abdominal aorta

Findings

Fusion of bilateral sacroiliac joints>>>>

AS: Follow-up

 Rheumatologist & Laboratory studies

Chiropractic care/management

Hydroxyappatite Deposition Disease of the longus collitendon

Aka calcific tendinitis

S/S: px, stiff neck, muscle spasms, painful swallowing

- Occurs due to trauma
- Self limiting 1-2 weeks

Sagittal Reformatted CT and Sagittal T2 weighted MR images

Case

Hx: suboccipital pain, headaches, and neck stiffness.

APOM & Lateral Flexed Views

- Increased lateral paraodontoid space and ADI
- Offset of the lateral edge of the lateral masses
- Posterior arch fracture
- Type 2 odontoid fracture
- Moderate prevertebral soft tissue swelling
- Associated with rupture of the transverse ligament

Jefferson Burst Fracture of C1

- 2 or more breaks of the ring of the atlas
 - Mc to fracture adjacent to the lateral masses; bilateral>unilateral
- Compressive injury

Posterior Arch fracture of C1

- Severe hyperextension
 - Posterior arch is compressed between the occiput and the posterior arch of C2

Stable fracture

- Possible vascular injury, vertebral artery
- MC fracture of the atlas
- Check for other fractures and spinal cord injury
 - CT vs MRI

Case

APOM & Lateral Neutral Views

www.brooksidepress.com

Findings

- Flattening and reversal of the cervical lordosis
- Generalized osteopenia
- Degenerative disc disease
 & Facet arthrosis
- Fracture and Angulation of the dens
- Soft tissue swelling of upper cervical

Odontoid Fracture: Type 2

- Type 2: fracture at the junction of the base of the dens and body of the axis
- Lateral tilt of the dens
- Most common fracture of C2
- Complication- nonunion

- Type 1- Avulsion; majority are stable
- Type 2- Nonunion complication
- Type 3- Vertical fracture through the body of C2; heals rapidly.

Type 1 Odontoid Avulsion Fracture

 Type 1= oblique fracture/avulsion of the odontoid by the alar ligament

 Alar ligament limits rotation and lateral flexion, contralateral side of the craniovertebral complex.

Radiographic Evaluation of the Alar Ligament

- Flexed and extended lateral views are normal
 - Widened ADI is a sign of transverse ligament injury
- APOM view
 - Majority are normal
- Evaluate Alar ligaments by APOM with right and left lateral (side) flexion
 - Right lateral flexed position= evaluates the left alar ligament
 - Example: In right lateral flexion, C1 displaces laterally away from dens on the right pass the C2 vertebral body margins= left alar ligament disruption.

Making Sense of It

- Normal motion: right lateral flexion of CO-C1 & C1-C2, approximate right condyle to dens and increased ADI on the right
 - Opposite slide & roll due to convex condyles and concave lateral masses of C1.
- Disrupted alar ligament on the left would allow more rolling of the condyle to the left and more right lateral sliding of C1 pass the C2 margins.
- Intact alar ligament would rotate the C2, deviating the spinous process away from lateral flexed side.

Bergmann & Peterson, Chiropractic Technique, 2nd Ed; 2002

Alar Ligament Rupture

Atlanto-occipital instability

CT

MRI

Alar Ligament on Coronal T1 weighted MR image

Protocol:

High resolution MR with Proton Density weighted images; 2.0-mm slice thickness

Odontoid Fracture Type 3

 Horizontal or vertical fracture through the body of C2

 Disruption of the ring shadow of C2 on the lateral projection

> Junction of the body and lateral masses.nick, D. Diagnosis of Bone and

Normal Ring Shadow of C2

www.hawaii.edu

Case

 Trauma with hyperflexion and hyperextension; MVA.

Case

www.medpix.com

Findings

- Flattening of the cervical spine
- Posterior ponticle
- Fracture or avulsion of the
 C7 spinous process
- What other fracture is present?

www.medpix.com

Clay Shoveler's Fracture & Teardrop Fracture

- C6, C7 & T1
- Avulsion of trapezius and rhomboid tendon on the spinous process
- MVA, wrestling, & diving>>abrupt flexion
- AP view: double spinous process
- Fragment typically displaces caudally; stable

Clay Shoveler's Fracture at C7 Sagittal Reformatted CT Image

Case

Findings

Anterior head carriage

 Anterior translation and flexion of the C6 body

Widened interspinous

Mild facet arthrosis

Unilateral Facet Dislocation

MOI: Flexion & Rotation

- Anterior displacement of body
- Bow tie sign with dislocated articular mass/pillars
- AP view upward rotation of spinous process

Unilateral Facet Dislocation

- Rupture of interspinous ligament and capsule
- Mild injury to PLL and anulus fibrosus
- Bilateral oblique views to identify the dislocated facet joint

Case

www.radpod.org

Findings and Diagnosis

- Anterior head carriage
 & Postural alterations
- Uncovertebral arthrosis
- Facet arthrosis, primarily on the left
- Perched/dislocation of C6 facet joint
- Teardrop fracture of C6

Teardrop Fracture at C6

Hyperflexion plus compressive force

Hyperflexion Teardrop Fracture

- Triangular fracture fragment along the anteroinferior margin of C5 or C6
- Rupture of the posterior ligaments
- Facet dislocation with widened interlaminar and interspinous spaces
- Cervical cord injury

Sagittal T1 and T2 Weighted Images

(Different Case of Hyperflexion Injury)

- C5-C6 level
 - Disruption of disc
- Increased
 signal within
 the posterior
 soft tissues and
 spinal cord due
 to edema

www.radiologyassistant.nl

Case

ANOTHER PATIENT-Skateboarder

AP open mouth

Findings

- Pedicle fracture of C2
- Facet dislocation & body displacement of C2
- Disruption of spinolaminar line, C1 & C2
- Osteopenia
- Degenerative disc disease & Facet arthrosis

Hangman's Fracture

 C2 traumatic spondylolisthesis

Hyperextension and compression Injury

Axial CT of Hangman's Fracture

www.jprad.com

Thanks for taking CE Seminars with Back To Chiropractic.

I hope you enjoyed the course. Please feel free to provide feedback.

Check out: Back To Chiropractic Resources
Free Materials: Notes & Forms hundreds of files ~ posters, newsletters & more

Services & Listings People helping people for free

Marcus Strutz DC

Back To Chiropractic CE Seminars

marcusstrutzdc@gmail.com

707.972.0047

